

Hrvatsko asfaltersko društvo

Croatian asphalt association

Europska istraživanja u području asfaltnih kolnika

European Research Activities in Asphalt Pavements

Rudi Bull-Wasser, Federal Highway Research Institute (BASt), Germany

Međunarodni seminar ASFALTNI KOLNICI 2016 International seminar ASPHALT PAVEMENTS 2016 Opatija, 06. – 07.04.2016

Content

- Introduction
- Funding bodies & programs
- Selected research projects
- Summary

Presentation objectives:

- Make aware of EU research opportunities
- Indicate possible impacts
- Encourage you to participate

Who is funding research across Europe?

– National bodies

Example: Germany

- Ministry of Transport and Digital Infrastructure
- Ministry of Education and Research
- Ministry for Economic Affairs and Energy
- German Federation of Industrial Research Associations AiF
- DFG Deutsche Forschungsgemeinschaft

Who is funding research across Europe?

- National bodies
 - Example: Croatia

 Croatian National Foundation for Science, Higher Education and Technological Development of the Republic of Croatia

> Funds research projects, laboratories and research groups of all fields, including Civil Engineering

- Croatian Ministry of Science, Education and Sports
- National Civil Engineering Research Institute: Institut IGH

Example of national funded reseach project: PAST

Norbert Simmleit

PAST

- Supported by German Ministry of Economy and Technology
- Project leader:

Hermann Kirchner GmbH (Member of STRABAG SE)

Partners:

5 equipment and component suppliers

2 Universities

German Federal Highway Research Institute (BASt)

- Project period: 2008 - 2012
- Total costs: .

Bundesministerium für Wirtschaft

und Technologie

"Prozesssicherer Automatisierter Straßenbau" (PAST 1) (Automatic, process-reliable road construction)

Problem analysis \rightarrow Development of solutions \rightarrow Demonstrators

Segregation

Temperature level and temperature distribution

Evenness

Information and data transmission

Requirements for the transport of asphalt mixtures with thermo isolated trucks

The use of thermo isolated trucks is mandatory for the transport of asphalt mixtures for surface, binder and base course. This will be applied in 3 stages:

- Stage 1 (01.01.2015 till 31.12.2016)
 →mandatory for asphalt surfaces >18.000 m² till 60.000 m²
- Stage 2 (from 01.07.2017 till 31.12.2018)
 →mandatory for asphalt surfaces >18.000 m²
- Stage 3 (from 01.01.2019 onwards)
 →mandatory for all asphalt surfaces

Construction equipment improvements

Construction companies nowadays use leveling devices, equipment to measure layer thickness and devices that automatically "remember" and restore the paver's setup parameters to achieve better overall construction quality

Example of national funded reseach project: PerformA

-Objective: Determine all performance-relevant characteristics of currently-manufactured asphalt mixtures during all phases: design, production and construction.

PerformA

Stiffness/fatigue: Cyclic indirect tensile test (CITT)

PerformA Results: Stiffness

International seminar ASPHALT PAVEMENTS 2016, Opatija, 06. – 07.04.2016

PerformA Results: Fatigue

Who is funding research across Europe?

- National bodies
- International organizations
 - European Commission
 - Framework Programs (FP1 FP7)
 - Horizon 2020

EU Commission FP 7

- Lasted 2007 until 2013 (some projects are still ongoing)
- Total budget of over €50 billion
- Either EU-based and extra-EU institutions
 (public and private) could apply
- Aim is to provide

scientific based results for their activities of the EU-Commission

Budget of FP7

DURABROADS

Cost-effective **DURAB**le **ROADS** by green optimized construction and maintenance

- Ongoing Project, EU contribution €2,5 million
- 9 participants (industry, university, and research institutes)

from 7 countries

- Objectives:

Design, development and demonstration of cost effective, eco-friendly and optimized long-life roads.

Use of greener materials: nano-carbon modified binders, PmB, WMA, RAP) Two trial sections for new asphalt materials LCA and LCC study

APSE Use of eco-friendly materials for a new concept of Asphalt Pavements for a **S**ustainable Environment

- Ongoing Project, EU contribution € 2,5 million
- 10 participants (industry, university and research institutes) from 5 countries
- Objectives:

Replacement of bitumen with greener materials from renewable raw sources (vegetable oil, bioethanol, etc.)

Replacement of aggregates with materials coming from demolition and maximization of Reclaimed Asphalt pavement

SHARP

Self Healing Asphalt for Road Pavements

- Ongoing Project, EU contribution € 250.000
- 1 participant (Marie-Curie fellowship, TU Delft, Netherlands)
- Objectives:

Development of a unique self-healing pavement with encapsulated rejuvenator

The rejuvenator is embedded in the pavement in the form of micro-capsules which are opened and released when the pavement cracks.

ROSANNE

ROlling resistance, Skid resistance, ANd Noise Emission measurement standards for road surfaces

Objectives

- Advanced harmonization/standardization of measurement methods for
 - skid resistance
 - noise emission
 - rolling resistance
 - of road pavements
- Prenormative research creating the technical basis for draft standards
- Adapted strategy for each parameter
- Close cooperation with CEN TC227 / WG5

ROSANNE

Example of rolling resistance test

Symbol	Surface Type	Location	Remarks	MPD
PERSr17	Poroelastic road surface	Drum Facility 1.7m	Porous surface made on the basis of mineral and rubber aggregate and polyurethane resin. Pavement suitable for roads and drum use, very smooth and flexible. Still in developing stage.	
DAC16r20	Replica of dense asphalt concrete with 16mm aggregate	Drum Facility 2.0 m	Polyester laminate replica made on the basis of a typical DAC 16 mm (rather high texture).	
ISOr20	Replica of ISO reference surface	Drum Facility 2.0 m	Polyester laminate replica made on the basis of the reference road surface ISO 10844 (average texture).	
APS4r17	Replica of surface dressing 8/10 mm aggregate	Drum Facility 1.7 m	Polyurethane /mineral replica of a single layer surface dressing 11 mm (very high texture).	
STEELr20	Plain steel surface	Drum Facility 2.0 m	Smooth steel surface of the drum 2.0 m	

ROSANNE

Example of rolling resistance test results

Turo	Speed	D	Tyre load [kG]		
Tyre	speed	Pavement	200	350	600
T1077	50	APS4r17	0.0142	0.013	0.0119
T1077	80	APS4r17	0.0151	0.0132	0.012
T1077	80	PERSr17	0.0103	0.0098	0.0095
T1077	80	DACr20	0.0066	0.0074	0.0077
T1077	80	ISOr20	0.0069	0.0073	0.0076
T1063	50	APS4r17	0.0168	0.0165	0.0161
T1063	80	APS4r17	0.017	0.0168	0.016
T1063	80	PERSr17	0.0125	0.0138	0.0143
T1063	80	DACr20	0.0102	0.0115	0.0123
T1063	80	ISOr20	0.0094	0.0111	0.0120

LCE4ROADS

D to the

Laboratories (FEHRL), Belgium Instituto Espanol del Cemento y sus Aplicaciones (IECA), Spain

Forum of European Highway Research

European Union Road Federation

Bundesanstalt fuer Strassenwesen

Fundacion CIRCE (Centro de Investigacion

Chalmers Tekniska Hoegskola AB, Sweden

de Recursos y Consumos Energeticos), Spain

(BASti, Germany)

(ERF), Belgium

Institut Francais des Sciences et Technologies des Transports, de l'Amenagement et des Reseaux (IFSTTAR), France

> Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), Netherlands

🛻 Karayollari Genel Mudurlugu (KGM), Turkey

AENOR Asociacion Española de Normalizacion y certificacion (AENOR), Spain

Q investeko INVESTEKO, Poland

 NAPE NAPE Narodowa Agencje Poszanowania Energii S.A. (NAPE), Poland

Development of a novel ECO-LABELing EU-harmonized methodology for cost-effective, safer and greener road products and infrastructures

Life Cycle Engineering approach to develop a novel **EU-harmonized sustainability certification system** for cost-effective, safer and greener road infrastructures

Domain	КРІ		List of requirements for certificate		
			Light	complete	
emal	Material	Materials consumption Recycled materials used Materials suspected to be recycled Energy demand (use of renewable energy sources/non renewable energy sources) Waste (Hazardous waste/non hazardous waste/ radioactive waste) Global Warming Potential	x x x x x x	x x x x x x	
<u>Environm</u>	Environmental Impact	Photochemical Ozone Creation Potential Ozone Depletion Potential Acidification Potential Eutrophication Potential Abiotic Depletion Potential Abiotic Depletion – fossil fuel Human Toxicity Ecotoxicity	voluntary voluntary voluntary voluntary voluntary voluntary voluntary voluntary	X X X X X X voluntary voluntary	
Economic	Age ncy Cost	Initial cost Maintenance cost Salvage value	X X voluntary	x x x	
	Comfort	Confort Index	x x	x x	
Social	Safety	Safety audits & safety inspections	x	x	
	Noise		voluntary voluntary	x x	
nical	Structur al	Resilient modulus values from FWD Roughness Skid resistance Macrotexture	voluntary X voluntary	voluntary X voluntary	
Tech		Rut depth Resilience to climate change	X voluntary	X voluntary	

All sustainability domains: environmental, economic, social, technical

International seminar ASPHALT PAVEMENTS 2016, Opatija, 06. – 07.04.2016

Table of **"Key** Performance Indicators"

EU Commission Horizon 2020

Kommission

- 7 years (2014-2020)
- Total budget of over 80 billion €
 (40% more than in FP7)

Three priorities

- Excellent science
- Industrial leadership
- Societal challenges

Horizon 2020

Levels

- Overall programming
- Work Programs
- Calls

Types of Supported Actions

- Research and Innovation Action
- Innovation Actions
- Coordination and Support Actions
- Co-financing

Europäische Kommission

Example of H2020 call

MOBILITY for GROWTH 2014-2015

H2020-MG-2015-Singlestage-B Sub call of: H2020-MG-2014-2			
Planned Opening Date	24-06-2015	Deadline Date	15-10-2015 17:00:00 (Brussels local time)
Publication date	11-12-2013	Total Call Budget	€18,500,000
Programme	Horizon 2020		
Status	Forthcoming	Main Pillar	Societal Challenges
		OJ reference	OJ C361/9 of 11 December 2013

<u>Topic:</u> Smart governance, network resilience and streamlined delivery of MG-8.4b-2015 infrastructure innovation

Topic Description

Topic Conditions & Documents

Submission Service

<u>Specific challenge</u>: Infrastructure owners and operators need to ensure the best possible return from increasingly limited transport infrastructure investment funds. The main challenge is to overcome the lack of a common framework for governance, management and finance of transport infrastructure projects (including methodologies and modelling) with the aim to enable transparent, risk-based optimisation of investments within and across the modes. This includes issues such as resilience against climate change and other disturbances. Additionally, it is necessary to enhance the industry's practices and capacities in order to raise the productivity, quality and timeliness of infrastructure projects.

FOX-USE-iT Project (H2020)

USE-iT partners **IBDIM** FEHRL FEHRL 7 191 TRL VGTU AIT HUMAN DNDI AIT LNEC TNO /NEK TNO Innovation CEDEX EURNEX EURNEX CEDEX IFSTTAR IFSTTAR OV DOPRAVNING CDV dgac vti VTI STAC STAC

FOX partners 7 IBDIM FEHRL FEHRL bast NETIVEI BASt DNDI ZAG ZAG COV DEPARTANC CDV IFSTTAR **IFSTTAR** VGTU TNO innovation TNO AIT annual and EURNEX AIT EURNEX LNEC dgac STAC /NE< STAC

Forever Open Infrastructure across all modes

International seminar ASPHALT PAVEMENTS 2016, Opatija, 06. – 07.04.2016

Who is funding research across Europe?

- National bodies
- International organizations
 - European Commission
 - Framework Programs (FP1 FP7)
 - Horizon 2020

- Conference of European Directors of Roads (CEDR)

CEDR

Conference of European Directors of Roads

- Conference of European Directors of Roads
- Members are European Road Ministries or
 - **Road Agencies**
- "Research calls": each call has a different focus

(e.g. road safety, asphalt, ITS...)

- Croatia is not a member

- Two Fast Track Pilot Projects
 - FTP1: Life-cycle analysis of open-graded asphalt pavements
 - FTP2: Performance management for low-noise pavements

- Three Project Opportunities
 - PO2: Optimisation of Thin Asphalt Layers
 - <u>PO3:</u> ...
 - <u>PO4:</u> ...

ERA-NET ROAD II

has strengthened the European Research Area in road research by coordinating national road research programmes and policies, to:

- establish a permanent structure
- manage transnational collaborative road research
- broaden joint research procurement/research support
- work towards a transnational expenditure of 10 %
- liaise with other stakeholders

ENR-CEDR Call 2011 Design

POTHOLE

Durable **Pothole** repairs

- Finished project, €315.000
- 7 participants (universities and research institutes)

from 6 countries

RECYPMA

Possibilities for high quality RECYling of Polymer Modified Asphalt

- Finished project, €315.000
- 4 participants (universities and research institutes)
 - from 3 countries

ENR-CEDR Call 2012 Reycling

CoRePaSol

Characterization of Advanced Cold-Recycled Bitumen Stabilized Pavement Solutions

- Ongoing project, € 350.000
- 5 participants (universities, industry and a research institute)
 from 4 countries
- Objectives:

Harmonization of **mix design of cold-recycled bitumen stabilized materials** following the existing scientific and engineering experience and approaches

Recommendation of mix design by studying compaction methods, curing procedures and performance tests

ENR-CEDR Call 2012 Reycling

EARN

Effects on Availability of Road Network

- Ongoing project, € 300.000
- 6 participants (universities, industry)

from 4 countries

- Objective:

Assess the effect on durability due to use of Reclaimed Asphalt

ENR-CEDR Call 2013 Energy Efficency

FunDBitS

Functional Durability-related Bitumen Specifications

- Ongoing project,
- 11 participants (universities, industry and a research institute)
 from 9 countries
- Objectives:

Propose changes in EN 12691, EN 14023 and 13 924 to introduce
performance-based specifications
Propose changes in bitumen test procedures
Propose changes in EN 13108 including suitable bitumen performance
characteristics

cont. CEDR Calls

Call 2014 involved two separate research programs:

1: Asset Management and Maintenance

- I: Road Asset Management
- A) C)...

II: Road Maintenance

Use of standard raveling tests to predict pavement durability

E) Recommendations for maintenance procurement by investigating current practices

2: Mobility and ITS

...

DRaT Development of the Raveling Test

- Objectives:
 - Comparison of existing devices
 - Recommendation for standardization

Call "Infravation" 2014

- ERA-NET+ "Infravation: advanced systems, materials and techniques for next generation road infrastructure"
- €9 million for co-financing
- 14 funding bodies (7 EU CEDR Members, EU Commission, USA FHWA, TÜV Rheinland, Iceland Road Authority, Norway Road Authority, Israel Netivei)
- Participants from all across the EU-EEA, USA, Turkey and Israel

Call "Infravation" 2014

Infravation An Infrastructure Innovation Programme

TRANSNATIONAL COLLABORATION OF 11 COUNTRIES AND THE EC ON ROAD INFRASTRUCTURE INNOVATION

An ERA-NET Plus Call to support development of advanced systems, materials and techniques for road infrastructure under seven defined challenges:

Project HEALROAD

-HEALROAD

Induction heating asphalt mixes to increase road durability and reduce

maintenance costs and disruptions

- Partners

Project HEALROAD

- Asphalt mixture is a natural self-healing material. When a crack is open in the road structure, it can close (heal) when enough temperature and time without traffic are provided.
- However, this process requires days for a complete healing, which in practice is impossible due to continual traffic flow.

 Self-healing of asphalt mixes can be accelerated by means of induction heating, a technique used to increase the temperature of electrically conductive and magnetic susceptible materials.

HEALROAD – Project -> WP5 (Leader BASt)

- In-situ characterization of the two test sections:
 - Adaptation of the induction-heating machine.
 - ✓ Reach approx. 0.5 m/s
 - Creation of cracks with the Mobile Load Simulator MLS10.

✓ Different construction-types will be tested by BASt to facilitate the creation of realistic micro-cracks.

• Life Cycle Analysis and Life Cycle Cost Analysis.

HEALROAD – Main outcomes and deliverables

- Description of factors in the chemical composition and rheology of the bitumen that most affect healing properties.
- Assessment of the influence of the air voids content and the type, size and amount of magnetic particles in the healing and the mechanical properties of the mixture.
- Quantification of unknown parameters associated with the healing of asphalt mixes:
- Maximum lifetime extension of the asphalt mixture.
- Effect of aging on the healing capacity of the asphalt mixes.
- Identifying the optimum time for healing in the lifetime of the road.
- Up-scaling of the production process of the mixes.
- Technical, economic and environmental validation of the technology.

Conclusions

Research on European Level is a substantial contribution

- additional funding
- fostering cooperation
- addressing common problems

Interesting topics are addressed

- recycling technologies
- questions of sustainability

Some duplication of work

Room for improvement

Interested to participate?

Cons

- No big business case for industry
- Not easy to navigate in the system
- Some paperwork

Pros

- Improve the content and results
- Gain knowledge
- Have influence

My recommendation:

Get in contact with somebody who knows

International seminar ASPHALT PAVEMENTS 2016, Opatija, 06. – 07.04.2016